19 research outputs found

    Motivational context for response inhibition influences proactive involvement of attention

    Get PDF
    Motoric inhibition is ingrained in human cognition and implicated in pervasive neurological diseases and disorders. The present electroencephalographic (EEG) study investigated proactive motivational adjustments in attention during response inhibition. We compared go-trial data from a stop-signal task, in which infrequently presented stop-signals required response cancellation without extrinsic incentives ("standard-stop"), to data where a monetary reward was posted on some stop-signals ("rewarded-stop"). A novel EEG analysis was used to directly model the covariation between response time and the attention-related N1 component. A positive relationship between response time and N1 amplitudes was found in the standard-stop context, but not in the rewarded-stop context. Simultaneously, average go-trial N1 amplitudes were larger in the rewarded-stop context. This suggests that down-regulation of go-signal-directed attention is dynamically adjusted in the standard-stop trials, but is overridden by a more generalized increase in attention in reward-motivated trials. Further, a diffusion process model indicated that behavior between contexts was the result of partially opposing evidence accumulation processes. Together these analyses suggest that response inhibition relies on dynamic and flexible proactive adjustments of low-level processes and that contextual changes can alter their interplay. This could prove to have ramifications for clinical disorders involving deficient response inhibition and impulsivity

    Motivational and neuromodulatory influences on proactive and reactive cognitive control

    Get PDF

    Preparing for (valenced) action: the role of differential effort in the orthogonalized go/no-go task

    Get PDF
    Associating reward to task performance has been shown to benefit scores of cognitive functions. Importantly, this typically entails associating reward to the execution of a response, hence intertwining action-related processes with motivational ones. However, recently, preparatory action requirements (go/no-go) and outcome valence (reward/punishment) were elegantly separated using a cued orthogonalized go/no-go task. Functional magnetic resonance imaging results from this task showed that typical areas of the “reward network,” like the dopaminergic midbrain and the striatum, predominantly encode action rather than valence, displaying enhanced activity when preparing for action (go) compared to inaction (no-go). In the current study, we used ERPs to probe for differences in preparatory state related to cognitive effort in this task, which has similarly been linked to reward-network activity. Importantly, the contingent negative variation, which is linked to effortful cognitive preparation processes during cue-target intervals, was clearly observed in go trials but not in no-go trials. Moreover, target-locked ERP results (N1 and P3) suggested that attention to the target was enhanced when an action had to be performed (go trials), and typical inhibition-related ERP components were not observed in no-go trials, suggesting a lack of active response inhibition. Finally, feedback-related P3 results could suggest that correct feedback was valued more in motivated go trials, again implying that more effort was required to correctly perform the task. Together, these results indicate that the anticipation of action compared to inaction simultaneously entails differences in mental effort, highlighting the need for further dissociation of these concepts

    Errors Disrupt Subsequent Early Attentional Processes

    Get PDF
    International audienceIt has been demonstrated that target detection is impaired following an error in an unrelatedflanker task. These findings support the idea that the occurrence or processing of unex-pected error-like events interfere with subsequent information processing. In the presentstudy, we investigated the effect of errors on early visual ERP components. We thereforecombined a flanker task and a visual discrimination task. Additionally, the intertrial intervalbetween both tasks was manipulated in order to investigate the duration of these negativeafter-effects. The results of the visual discrimination task indicated that the amplitude of theN1 component, which is related to endogenous attention, was significantly decreased fol-lowing an error, irrespective of the intertrial interval. Additionally, P3 amplitude was attenu-ated after an erroneous trial, but only in the long-interval condition. These results indicatethat low-level attentional processes are impaired after errors
    corecore